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Plant signalling peptides: some recent developments
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Abstract: The subject of this review is plant signalling peptides, peptides of a new generation which regulate growth, differentiation,
and other plant physiological functions. These peptides include systemin, the phytosulfokines (PSKs), ENOD40, CLAVATA3, Locus-
S, POLARIS, IDA, and ROT4. On the basis of literature data and our own results we discuss their structure, biological properties,
and structure/biological function relationship, especially for the more studied systemin and PSK-α. Copyright  2007 European
Peptide Society and John Wiley & Sons, Ltd.

Keywords: plant peptide hormone; phytosulfokines; systemin; CLAVATA; Locus-S; POLARIS; IDA; ROT4

INTRODUCTION

It was noticed in as early as the 19th century that
plants contain chemical transmitters that regulate their
physiological processes. In the 1930s auxine, a growth
hormone of uncomplicated structure, was isolated from
plants [1,2]. In subsequent years, other plant hormones
of diverse structure, such as giberelin [3], cytokines [4],
abscisic acid [5], jasmonianes [6], ethylene [7], and
brasinosteroids [8], were isolated. These substances
are responsible for growth, development, proliferation
and division of cells, tropism, maturation, ageing,
and enzyme synthesis in plants. It is surprising
that till the 1990s no peptide signalling substances
had been described. Such compounds had been
isolated earlier from lower and higher plants but
these were mostly plant metabolites, antibiotics, or
toxins.

Only in the last decade of the last century were
endogenous signal and growth plant peptides iden-
tified. The discovery of these hormones gave rise to
new studies in the field of plant phytochemistry and
physiology.

We now know several groups of peptide hormones,
such as systemin [9], phytosulfokines (PSKs) [10–13],
ENOD40 peptides [14–17], CLAVATA3 [18], S-locus
[19–22] POLARIS [23–25], inflorescence deficient in
abscission (IDA) [26,27] and ROT4 [28,29] which are
the subject of the present review. Studies concerning
systemin and PSK-α predominate in the literature,
and will therefore be discussed here in the greatest
detail.

* Correspondence to: Danuta Konopińska, Faculty of Chemistry,
University of Wrocław, 50-383 Wrocław, F. Joliot-Curie 14 Street.
Poland; e-mail: dk@wchuwr.chem.uni.wroc.pl

Systemin

Systemin, an octadecapeptide of the sequence Ala-Val-
Gln-Ser-Lys-Pro-Pro-Ser-Lys-Arg-Asp-Pro-Pro-Lys-Met-
Gln-Thr-Asp, was isolated for the first time in 1991
by Ryan et al. [9] from infected leaves of the tomato
Lycopersicon esculentum. The injury may be a result
of insects feeding on the plant or other mechanical
damage. Systemin activates the synthesis of proteinase
inhibitors not only in the damaged tissues but also in
the distant undamaged parts of the plant [30]. In subse-
quent studies the peptide was also isolated from other
plant species of the Solanaceae family, including potato
(Solanum tuberosum), bell pepper (Capsicum annuum),
and black nightshade (Solanum nigrum) [31].

Systemin is present in the whole plant except roots
[32]. The search for systemin in other plant species,
such as lupin [33] or poplar leaves [34] has not given the
expected results. The sequences of systemin isolated
from various plant species of the Solanaceae family
differ slightly from each other (Table 1) [31].

It has been shown that systemin is released from
its precursor, prosystemin [30,36], and is the 179–196
octadecapeptide fragment of prosystemin located near
its C-end. The peptide is flanked by a Leu residue at
the N-end and a tetrapeptide fragment H-Asn-Asn-Lys-
Leu-OH at the C-end (Figure 1).

Owing to the fact that prosystemin is a precursor of
systemin it should be given some attention. It consists
of 200 amino acid residues, of which 43% are polar
[30]. It is stored in low quantities in leaves and its level
increases in response to injury [36].

Stress evoked by plant damage activates the biosyn-
thesis of prosystemin along with a group of proteolytic
enzymes whose task is to release systemin [30]. One
should mention that, e.g., in transgenic tomatoes there
is the excessive expression of prosystemin (as if the
plants were constantly damaged), which shows that
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BIOGRAPHY
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prosystemin overexpression is a sufficient factor in
starting the octadecanoic pathway [31]. On the basis

of their studies, Ryan [37] has proposed a mecha-
nism of systemin action in plants. It is a complex
process of enzyme-regulated transformations initiating
a complicated signal cascade [35]. It results in releas-
ing jasmonic acid, which activates the defensive gene
(Figure 2).

This signal system shows an analogy with the
eicosane signal system in animals [38]. A similarity
between defensive signalling in plants and animals
suggests that both signal paths could have developed
from common ancestral beginnings [38].

Meindl et al. [39] and Scheer and Ryan [40,41],
studying systemin binding to the receptor sites on the
plant membranes, have found that it binds to a protein
of 160 kDa which they called systemin receptor-160.
They performed their studies on cell cultures from a
potato (Lycopersicon peruvianum) with radioisotopically
labelled systemin analogue [Tyr(125J)2, Ala15]-systemin
as a ligand [40].

Structurally, systemin is highly polar, containing in
its peptide chain both basic and acidic amino acid
residues. A striking feature is the presence of four
Pro residues (positions 6, 7, 12, and 13), which form
an important structural element and conformational
influence. There is a Gln residue at position 3 in
systemin isolated from the tomato leaves, whereas
systemin from potatoes and Turkish pepper contains
a His residue at this position. Systemin obtained from
black nightshade, S. nigrum, contains Arg and Pro
residues at position 3 and 11, respectively (Table 1).

During studies on the structure–function relation-
ship of systemin, a series of its analogues have been
synthesized. Modifications of systemin consisted in the
synthesis of:

1. analogues devoid of the N-terminal Ala and C-
terminal Asp residues;

2. the C-terminal fragment H-Met-Gln-Thr-Lys-OH;
3. analogues with the peptide chain substituted by Ala

at all positions.

In biological studies on systemin and its analogues
their properties as activators of proteinase inhibitor
biosynthesis have been evaluated [42].

Table 1 The amino acid sequence of systemin in different
plant species [35]

Plant
species

Amino acid
sequence

Lycopersicon esculentum AVQSKPPSKRDPPKMQTD
Solanum tubcrosum-2 AVHSTPPSKRDPPKMQTD
Solanum tubcrosum-2 AAHSTPPSKRDPPKMQTD
Solanum nigrum AVRSTPPPKRDPPKMQTD
Capsium annuum AVHSTPPSKRPPPKMQTD
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It has been found that substitution of Pro-13 or Thr-
17 by Ala drastically decreases and abolishes biological
activity [42]. Further studies have shown that these
analogues exhibit antagonist activity.

Analogues of systemin devoid of the N- and C-
terminal residues are not able to induce inhibitor
biosynthesis. Weak systemin activity is preserved in
the systemin C-terminal tetrapeptide fragment. The
results obtained show that Pro-13, Thr-17, and the
N- and C-terminal residues are indeed important for
the systemin–receptor interaction [42].

A striking feature of systemin is the symmetrical
appearance of two pairs of Pro residues at positions
6 and 7, and 12 and 13. This general symmetry is
complemented by the presence of three Lys and Arg
residues, and between the Pro pairs is the tetrapeptide
Ser-Lys-Arg-Asp. The presence of Gln residues at
positions 3 and 16 is also interesting (Figure 1).

In 2001, octapeptides were isolated from tobacco
leaves, which were named TobHypSysI and TobHyp-
SysII (Table 2) [43]. They show functional similarity to
the previously described systemin. Like systemin, the
octapeptides are released by the plant cells in response
to tissue damage by pathogens, and provoke the pro-
teinase inhibitor synthesis. In the course of further
studies, peptides showing systemin activity have been
isolated from tomato leaves and characterized [44]. They
are composed of 18 (TomHypSysI), 20 (TomHypSysII),
and 15 (TomHypSysIII) amino acid residues (Table 2).
Each of these peptides contains an amino acid sequence
rich in Hyp residues surrounded by polar residues.
These compounds are glycopeptides, though the carbo-
hydrate attachment sites have not yet been established
[43,44]. The carbohydrate component is essential for
biological activity.

Conformational studies on systemin. On the basis of
their CD investigations, Toumadje and Johnson [45]
have postulated that the structure of the systemin
central part is analogous to that of polyproline II.
Ślósarek et al. [46] have used two-dimensional NMR
to find the presence of the cis isomer in systemin,
which showed that the peptide adopts a Z-like β-sheet
conformation (Figure 3).

It follows from the results presented that systemin
has so far been identified in plants of the Solanaceae
family. The biological activity of systemin is dependent
on its structure and modifications of the systemin

Figure 2 A proposed model for the activation of proteinase
inhibitor genes by systemin [32].

Table 2 The amino acid sequences of systemin: TobHypSysI,
TobHypSysII, TomHypSysI, TomHypSysII, and TomHypSysIII
are shown compared with the sequence of tomato systemin
[37]

Peptide Amino acid
sequence

Pentose
units

TobHypSysI RGANLPOOSOASSOOSKE 9
TobHypSysII NRKPLSOOSOKPADQRP 6
TomHypSysI RTOYKTOOOOTSSSOTHQ 8–17
TomHypSysII GRHDYVASOOOOKPQDEQRQ 12–16
TomHypSysIII GRHDSVLPOOSOKTD 10
Systemina AVQSKPPSKRDPPKMQTD 0

amino acid sequence result in compounds of the
decreased biological activity.

Phytosulfokines

Discovery and biological properties of PSKs. PSKs,
plant signal peptides of the sequences H-Tyr(SO3H)-
Ile-Tyr(SO3H)-Thr-Gln-OH (PSK-α) and H-Tyr(SO3H)-
Ile-Tyr(SO3H)-Thr-OH (PSK-β), were isolated in 1996
by Matsubayashi et al. from the mesophyll cell cultures
of asparagus – Asparagus officinalis [10], rice – Oryza
sativa [11], zinnia – Zinnia elegans [12], and car-
rot – Daucus carota [13]. These peptides possess mito-
genic properties and are involved in plant cell pro-
liferation [10] and in re-differentiation of cells (e.g.

MGTPSYDIKNKGDDMQEEPKVKLHHEKGGDEKEKIIEKETPSQDENNKDTIS

SYVLRDDTQEIPKMEHEEGGYVKE K I V E K E T E S Q Y I I K I E G D D D A Q E K L KV

EYEEEEYEKEKIVEKETPSQDINNKGDDAQEKPDVEHEEGDDKETPSQDIIKM

EGEGALEITKVVCEKI IVREDLAVQSKPPSKRDPPKMQTDNNKL

Figure 1 The amino acid sequence of prosystemin. The systemin sequence is indicated within the C-terminus [24].
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Figure 3 Stereoview structure of systemin [46].

transformation of the leaf mesophyll cells from zinnia
to the tracheary element) [12].

Both PSK-α and PSK-β stimulate the proliferation of
plant cells at a concentration 10−9 M; PSK-β acts more
weakly and retains 8% of the PSK-α activity [47].

The presence of PSKs was confirmed for the first time
in the conditioned medium (CM) prepared from rapidly
growing mesophyll cells in culture of A. officinalis [10].

The mitogenic activity of single cells in the culture
is strongly associated with the so-called initial cell
density [10] (the minimum density of cells necessary
for initiating the division and differentiation of cells in
the culture). It can be initiated in a culture of the low
population density by introducing it to the CM.

PSKs, besides activation of cell proliferation and dif-
ferentiation processes, fulfill other functions in plants.
They have stimulatory effects on chlorophyll synthe-
sis in etiolated cotyledons of cucumber [48] as well as
on the growth and chlorophyll content of Arabidopsis
seedlings under high night-time temperature conditions
[49]. Moreover, PSKs have stimulatory effects on adven-
titious root formation by hypocotyls of cucumber [50]
and adventitious bud formation in Antirrhnum majus
[51], influence the activation of alkaloid synthesis in
Atropa belladonna [52], and reinforce the frequency of
somatic embryogenesis in carrot cultures [13,53].

The species diversity of the plants in which PSKs are
present and the variety of functions these compounds
play suggest they are universal plant peptide hormones.

The PSK precursor. After the discovery of the PSKs, an
attempt to search for their precursor was undertaken
[47]. It has been found that the precursor of PSK-α
is preprophytosulfokine (PP-PSK) consisting of 89
amino acid residues (Figure 4) and the pentapeptide
discussed is released from it by proteolysis. PP-PSK
has been isolated from the rice line Oc cells which are
characterized by a high content of PSK-α in comparison
with other plant species [54].

(A)

(B) FDSAKWEEFHTDYIYTQDVKNP

Figure 4 Precursor protein structure of PSK-α. (A) Structure
of preprophytosufokine, with important domains: the potential
N-terminal signal peptide and the active oligopeptide, PSK-α,
are highlighted (B) Amino acid sequence around PSK-α.

Two important peptide chain segments can be
distinguished in the structure of PP-PSK, which are
important for biological activity. The first one is an N-
terminal signal fragment of 22 amino acid residues
including 10 Leu residues, and the second is the
80–84 fragment of PSK-α flanked at both termini
by Asn residues [54]. There are 22 hydrophobic
amino acid residues in the PP-PSK chain. Among
the hydrophilic residues, acidic amino acids (Asp and
Glu) and their derivatives (Asn and Gln) are often
observed.

The mechanism of releasing PSK-α from its precursor
is not fully understood yet, and little is known about the
sites at which the hormone is cleaved by endoproteolytic
enzymes.

It is interesting that PP-PSK does not show a
homology with any plant protein found so far. There are,
however, slight analogies with animal preprohormones,
e.g. the epidermal growth factor (EGF) of rat [55].

These similarities are such that, as with animal
preprohormones, PP-PSK contains a 22-amino-acid N-
terminal signal peptide, the release of which gives a 67-
amino-acid prohormone is formed [54]. When animal
prohormones and the PSK prohormone have been
compared, it was observed that the PSK-α sequence,
as opposed to prohormones of the animal origin, is
observed only once in the C-terminal precursor section
[54].

The PSK receptor. Further studies on PSKs have sought
a receptor site in plants. They have been carried out
using PSK-α analogue labelled with 125I and having a
4-azidosalicoyl group on the side chain of Lysine-5.
The results of these studies indicate that there are two
receptor proteins, of 120 and 160 kDa, respectively, in
the rice plasmatic membrane [56].

Valuable information on the PSK receptor have
been obtained by the studies of Matsubayashi and
Sakagami [57], in which [3H]PSK-α was used. They
showed the influence of pH and selected metal ions
on the specificity of receptor binding. The results of
these studies suggest that the ligand–receptor binding
is controlled by the ionic interactions with the side
chains of basic amino acid residues located close to
the receptor active site, which may have a significant
influence on the receptor conformation.

Copyright  2007 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2007; 13: 787–797
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Structure–physiological function of PSK. The structure
of PSK-α is characterized by the presence of Tyr(SO3H)
residues, at position 3 of the peptide chain.

To study the structure–biological function of PSK-α,
a series of its peptide analogues have been synthesized
(Table 3). The biological effects of these peptides have
been evaluated by tests in which the mitotic activity
of PSK-α and its analogues towards A. officinalis
cells [47] and the binding of radioisotopically labelled
peptide [3H]PSK-α to carrot membrane protein [58] were
studied. The structural modifications in the studies of
Matsubayashi et al. [47] consisted in:

1. Substitution of the PSK-α sulphate residues by the
esterified Tyr residues;

2. Simultaneous removal of the C- and N-terminal
residues of the PSK chain;

3. Removal of the N-terminal residue of PSK;
4. Exchange of Ile2 by Val or Thr4 by Ser;

Table 3 Mitogenic activities of PSK analogues. Mesophyll
cells of asparagus were incubated in the presence of each
PSK analog. Mitogenic activities were determined on the
6th day of culture and ED50 value was defined as the
concentration of compound required for 50% cell division
[47]

Peptide ED50

(nM)
Relative
activity

H-Tyr(SO3H)-Ile-
Tyr(SO3H)-Thr-Gln-OH

4 100

H-Tyr(SO3H)-Ile-
Tyr(SO3H)-Thr-OH

50 8

H-Tyr(SO3H)-Ile-
Tyr(SO3H)-OH

20 20

H-Tyr(SO3H)-Ile-OH >1000 <0.1
H-Ile-Tyr(SO3H)-Thr-Gln-
OH

>1000 <0.1

H-Tyr(SO3H)-Ile-
Tyr(SO3H)-Thr-Gln-Gly-
Gly-Gly-OH

100 4

H-Gly-Gly-Gly-Tyr(SO3H)-
Ile-Tyr(SO3H)-Thr-Gln-OH

500 0.8

H-Tyr(SO3H)-Ile-
Tyr(SO3H)-Thr-Gln-Gly-
Gly-Gly-Cys-OH

40 10

H-Tyr(SO3H)-Ile-Tyr(OH)-
Thr-Gln-OH

100 4

H-Tyr(OH)-Ile-Tyr(SO3H)-
Thr-Gln-OH

700 0.6

H-Tyr(OH)-Ile-Tyr(OH)-Thr-
Gln-OH

>1000 <0.1

H-Tyr(SO3H)-Val-
Tyr(SO3H)-Thr-Gln-OH

100 4

H-Tyr(SO3H)-Ile-
Tyr(SO3H)-Ser-Gln-OH

200 2

5. Elongation of the peptide chain by a triglycine
fragment from the N- or C-end (Table 3).

Further studies on the PSK structure–biological
activity relationship have been undertaken [59,60]
involving:

(1) substitution of the Tyr(SO3H) residues at position
1 or 3 or simultaneous exchange of both Tyr(SO3H)
residues at positions 1 and 3 of the peptide chain;

(2) change of amino acid configuration from L to D at
position 1 or 3 or at both positions at the same time;

(3) substitution of Thr4 by Ser (Tables 4–6).

Among a series of analogues, the greatest affinity
for the receptor (30%) was shown by [Phe(4-Cl)1]-
, [Phe(4-I)1]-, and [Phe(4-Cl)3]-PSK-α. [Phe(4-NO2)

1]-
, [Phg(4-NO2)

1]- [Phe(4-F)3]- and [Tyr(PO3H2)
3]-PSK-α

preserved 10% of the native peptide activity (Tables 4
and 5). A low affinity for the receptor (3%) was observed
for the analogue modified at position 1 of the peptide
chain by Phe(4-Br) and D-Phe(4-NHSO2CH3). [D-Phg(4-
NO2)]- and [Phg(4-OSO3H)]-PSK-α also showed a low

Table 4 Biological activity of PSK-α analogues modified in
position 1 of the peptide chain [59,60]

Peptide Biological
activity (%)

H-D-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH (I) <0.1
H-Phe(4-SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH (II) <0.1
H-D-Phe(4-SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH (III) <0.1
H-Phe(4-NHSO2CH3)-Ile-Tyr(SO3H)-Thr-Gln-OH
(IV)

<0.1

H-D-Phe(4-NHSO2CH3)-Ile-Tyr(SO3H)-Thr-Gln-
OH (V)

3

H-Phe(4-NO2)-Ile-Tyr(SO3H)-Thr-Gln-OH(VI) 10
H-D-Phe(4-NO2)-Ile-Tyr(SO3H)-Thr-Gln-OH (VII) <0.1
H-Phe(4-Cl)-Ile-Tyr(SO3H)-Thr-Gln-OH (VIII) 30
H-Phe(4-Br)-Ile-Tyr(SO3H)-Thr-Gln-OH (XIX) 3
H-Phe(4-F)-Ile-Tyr(SO3H)-Thr-Gln-OH (X) <0.1
H-Phe(4-I)-Ile-Tyr(SO3H)-Thr-Gln-OH (XI) 30
H-Tyr(PO3H2)-Ile-Tyr(SO3H)-Thr-Gln-OH (XII) <0.1
H-D-Tyr(PO3H2)-Ile-Tyr(SO3H)-Thr-Gln-OH (XIII) <0.1
H-Phg(4-SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH (XIV) <0.1
H-D-Phg(4-SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH
(XV)

<0.1

H-Phg(4-NHSO2CH3)-Ile-Tyr(SO3H)-Thr-Gln-OH
(XVI)

<0.1

H-Phe(4-NO2)-Ile-Tyr(SO3H)-Thr-Gln-OH (XVII) 10
H-D-Phg(4-NO2)-Ile-Tyr(SO3H)-Thr-Gln-OH
(XVIII)

1

H-Phg(4-OSO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH
(XIX)

1

H-Phg(4-OPO3H2)-Ile-Tyr(SO3H)-Thr-Gln-OH
(XX)

<0.1

H-Hpa(4-NO2)-Ile-Tyr(SO3H)-Thr-Gln-OH (XXI) <0.1

Copyright  2007 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2007; 13: 787–797
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Table 5 Biological activity of PSK-α analogues modified in
position 3 or 4 of the peptide chain [59,60]

Peptide Biological
activity (%)

H-Tyr(SO3H)-Ile-Phe(4-NO2)-Thr-Gln-OH (XXII) 3
H-Tyr(SO3H)-Ile-Phe(4-Cl)-Thr-Gln-OH (XXIII) 30
H-Tyr(SO3H)-Ile-Phe(4-F)-Thr-Gln-OH (XXIV) 10
H-Tyr(SO3H)-Ile-Tyr(PO3H2)-Thr-Gln-OH (XXV) 10
H-Tyr(SO3H)-Ile-D-Tyr(PO3H2)-Thr-Gln-OH
(XXVI)

<0.1

H-Tyr(SO3H)-Ile-Phg(4-NO2)-Thr-Gln-OH (XXVII) <0.1
H-Tyr(SO3H)-Ile-Hpa(4-NO2)-Thr-Gln-OH
(XXVIII)

<0.1

H-Tyr(4-SO3H)-Ile-Tyr(4-SO3H)-Val-Gln-OH (XIX) <0.1
H-Tyr(SO3H)-Ile-Tyr(SO3H)-Ile-Gln-OH (XXX) <0.1

receptor activity (1%). Other analogues were practically
inactive.

On the basis of those results, it is difficult to discuss
importance of the individual amino acid residues for
the plant biological activity. Nevertheless, it should be
noted that the presence of sulfate esters at position
4 of the Tyr aromatic ring at positions 1 and 3 of
the PSK-α peptide chain is essential for preservation
of biological activity. It follows also from these studies
that the configuration of the Tyr residues at positions
1 and 3 is fundamental for the PSK-α activity because
the substitution of L-Tyr by D-Tyr results in the loss of
biological activity.

OTHER PLANT SIGNAL PEPTIDES

ENOD40

There are nodules in the roots of legume plants in
which the atmospheric nitrogen is bound and reduced
to ammonia. These nodules are activated by the
signal lipo-chito oligosaccharide molecule (nod factor)
synthesized by Rhizobia bacteria [61]. This process is
initiated by local root cells. Studies on several legume
plant species have demonstrated that an important
role in the response to the nod factor is played by
nodulin genes. One of them is ENOD40 [14–17,] which
is detected in soya one day after its inoculation with the
Rhizobia bacteria. It induces proliferation and division
of cells in the internal part of the root bark at the early
stage of nodule organogenesis, and hence its name
(Early NOD) [61,62]. The structure of the gene has been
described in detail in many papers [14–17].

Table 6 Biological activity of PSK-α analogues modified in
position 1 and 3 of the peptide chain [59,60]

Peptide Biological
activity (%)

H-Phe(4-SO3H)-Ile-Phe(4-SO3H)-Thr-Gln-OH
(XXXI)

<0.1

H-Phe(4-NO2)-Ile-Phe(4-NO2)-Thr-Gln-OH
(XXXII)

<0.1

H-Phe(4-Cl)-Ile-Phe(4-Cl)-Thr-Gln-OH(XXXIII) <0.1
H-Phe(4-F)-Ile-Phe(4-F)-Thr-Gln-OH (XXXIV) <0.1
H-Tyr(PO3H2)-Ile-Tyr(PO3H2)-Thr-Gln-OH
(XXXV)

<0.1

H-D-Tyr(PO3H2)-Ile-D-Tyr(PO3H2)-Thr-Gln-OH
(XXXVI)

<0.1

H-Phe(4-Cl)-Ile-Tyr(3-SO3H)-Thr-Gln-OH
(XXXVII)

<0.1

H-Phe(4-Br)-Ile-Tyr(3-SO3H)-Thr-Gln-OH
(XXXVIII)

<0.1

H-Phe(4-F)-Ile-Tyr(3-SO3H)-Thr-Gln-OH (XXXIX) <0.1
H-Phe(4-I)-Ile-Tyr(3-SO3H)-Thr-Gln-OH (XL) <0.1
H-Tyr(3-SO3H)-Ile-Phe(4-Cl)-Thr-Gln-OH (XLI) <0.1
H-Tyr(3-SO3H)-Ile-Phe(4-F)-Thr-Gln-OH (XLII) <0.1
H-Phg(4-NO2)-Ile-Phg(4-NO2)-Thr-Gln-OH (XLIII) <0.1
H-Hpa(4-NO2)-Ile-Hpa(4-NO2)-Thr-Gln-OH
(XLIV)

<0.1

On the basis of sequential analysis of genes derived
from several legume plant species, the sequences of
peptides rated among the ENOD40 group (Table 7) have
been deduced. A constant appearance of the Trp residue
and the repeated C-terminal peptide fragment IHGS
(Table 7) in the chains of these peptides is observed
[63]. The presence of these peptides in plants plays an
important role, as it seems, in the binding of nitrogen
in the plant nodule. The ENOD40 gene expression may
be the factor initiating a hormonal action of nodule in
the legume plants root cells [62]. Very few studies have
been carried out to establish the role and mechanism
of action of these peptides.

CLAVATA3 (CLV3)

CLAVATA3 (CLV3) is a signal polypeptide found in
Arabidopsis thaliana [18]. The structure of the peptide,
like that of ENOD40, has been deduced from gene
CLV3 sequential analysis [18]. It consists of 96
amino acid residues, and the octadecapeptide signal
sequence located at the N-end, which is a hydrophobic
fragment rich in Leu residues (Figure 5). The peptide
is responsible for the proliferation of cells in the

MDSKSFVLLLLLFCFLFLHDASDLTQAHAHVQGLSNRKMMMMKMESEWVGANGE

AEKAKTKGLGLHEELRTVPSGPDPLHHHVNPPRQPRNNFQLP 

Figure 5 The CLV3-predicted amino acid sequence. The signal peptide is indicated within the N-terminus [18].
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plant shoot apical meristem. Probably it counteracts
excessive cell proliferation [64]. The shoot apical
meristem controls a steady increase of the shoot and
root length, differentiation of cells, and their building
into the leaves and flower buds. As has been shown,
in the Arabidopsis CLAVATA genes (CLV1, CLV2, and
CLV3) are responsible for keeping the equilibrium
between proliferation and differentiation of cells. The
role of individual gene has been the subject of broader
research including also studies on transgenic plants
[64–66]. For clarity we omit the description of individual
gene roles and mechanisms of action, referring the
reader to the literature [67]. Until now, CLAVATA 3
have been the subject of studies by plant physiologists
only, and there are no investigations concerning its
structure–biological function relationships.

S-locus. There are three genes in locus S: SLG, SRK,
and SCR [68]. They code the proteins that are involved
in the mechanism of self-incompatibility. This complex
process prevents self-fertilization of plants by their
own pollen. In the pollination process, the pollen
grains land on a stigma and undergo the steps of
recognition, adherence, and hydration, followed by
pollen germination and pollen tube growth through the
pistil. If the pollen is recognized by polymorphic protein
receptors (S-locus) as their own, then the pollination
is stopped. This process prevents self-pollination, and
in the long run counteracts plant degeneration. The
self-incompatibility (self-infertility) is the most effective
mechanism protecting against self-pollination, which
consists in the incompatible pollen grain not sprouting
at all or, in case the sprouting is started, short stili
not penetrating the stigma. The self-incompatibility in
Brassicaceae is controlled by a single multiallelic locus
S. When the stigma is contacted by a pollen grain with
the alleles identical to those of the pistil stigma, that
pollen is recognized as ‘self’ and rejected while ‘non-
self’ pollen can develop normally which leads to the
fertilization of a cell [69]. This phenomenon has been
best studied in plants of the Brasicaeceae family.

Gene SRK codes the protein functioning as a female
self-incompatibility determinant [69]. The role of the

Table 7 The amino acid sequence of ENOD40 in different
plant species [35]

Plant species Sequence of ENOD40

Medicago sativa MKLLCWQKSIHGS
Medicago trunculata MKLLCWEKSIHGS
Pisum sativum MKFLCWQKSIHGS
Vicia sativa MKLLCWQKSIHGS
Glicine max-1 ME - LCWQTSIHGS
Glicine max-2 ME - LCWLTTIHGS
Lupinus luteus ME - LSWQKSIHGS
Nicotiana tobacum MQ --- WDEAIHGS

SLG protein has not been studied so far. On the basis
of accumulated proofs, a hypothesis has been put
forward that the SLG proteins may (i) be a necessary
component of the receptor complex [70], (ii) participate
in the posttranscriptional maturation of SRK [71], (iii)
take part in adhesion of the pollen to stigma [72], or (iv)
function as carriers of the pollen ligand [73].

The best known is gene SCR (S-locus cysteine – rich
protein), also known as SP11 [74,75], which was
isolated in 1999 from Brassica compestis (rapa) plants
[75]. SCR codes the protein which acts as a male
self-incompatibility determinant [75]. It is a signal
polypeptide containing 74–83 amino acid residues and
characterized by the presence of eight Cys residues
(so-called Cys-rich peptide). The sequence of that
polypeptide has been deduced from the sequence
of gene S8 which codes SCR/SP11 [74]. SCR is a
new member of the pollen coat protein (PCP) protein
family [76] (Figure 6). The structure–biological function
relationship of Locus S peptide has not been studied
so far.

The peptide is the subject of other intensive biological
studies.

POLARIS

POLARIS (PLS) is a 36-amino-acid peptide (4.6 kDa)
[23]. Its sequence has been deduced from the genome
of Arabidopsis (Figure 7). It does not possess a signal
sequence, which suggests that it acts in the cytoplasm,
though there is no direct evidence for its presence
in the intracellular region. PLS is expressed in the
embryonic root and in the seedling’s primary and lateral
root tips [24]. Among pls mutant plants, a reduced
primary root length due to reduced longitudinal cell
expansion and increased radial expansion has been
observed. Moreover, vascularization of the rosette
leaves is also reduced with the fewer higher-order veins
arising from the major strands. It has followed from
successive studies that the pls mutants show hyper-
responsiveness to exogenous cytokinin and reduced
responsiveness to auxin mutants, two hormones
responsible for proper root growth and the development
of leaves’ vascular system [25]. Basing on these
observations, a hypothesis has been put forward that
PLS is responsible for the maintenance of equilibrium
between auxins and cytokins. Nevertheless, the precise
mechanism of the peptide action has not been
recognized yet.

IDA

Abscission is a physiological process of cell separation,
which allows plants to discard unwanted organs, like
old leaves or flowers. It starts with the formation of an
abscission zone, which separates the plant body from
the organs to be shed.
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SP11-9

MK-SAIYALLCFIFIVSSHVQEV-E--ANLRKT-CVHRLNSGGSCGKSGQHDCEAFYTNKTN 

QKAFYCNCT-SPFRTRYCDCAIKCKVR 

SP11-8

MK-SAVYALLCFIFIVSGHIQEL-E--ANLMKR-CTRGFRKLGKCTTLEEEK CKTLYP-R----

-GQCTCSDSKMNTHSCDC-KSC 

SP11-12

MK-SAIYALLCFIFIVSSHVQELTEVGAD--KQQCKKNFP--GHCETS--ERCENTYK-RLN

KKVFDCHCQ--PFGRRLCTC-K-C 

SP11-52

MK-SVLYALLCFIFIVSSHVQDV-E--ANLMNR-CTRELPFPGKCGSSEDGGCIKLYSSEKKL

HPSRCEC-EPRYKARFCRC-KIC 

PCP-A1

MKNTVKLSLIGFVMLTVLLLGETVI--AQKRKP-CYSQEP-DKTCEVN---RCKANCVKKHK

KILAFTSCIKENNGNMYCRCQYPCPP

Figure 6 Alignment of predicted amino acid sequences of four allelic variants SP11 and PCP-A1. The amino acids of putative
signal peptide for each protein are shown in italics; conserved cysteine residues in all four allelic variants of SP11 are shown in
bold [76].

MKPRLCFNFRRRSISPCYISISYLLVAKLFKLFKIH

Figure 7 The amino acid sequence of POLARIS [77].

A few days after anthesis the Arabidopsis plants
discard intact turgid flower petals, sepals and stamens.

Among Arabidopsis plants mutants have been
identified that do not shed the flowers even after the
shedding of mature seeds. These plants have been
described as IDA [26]. It follows from the studies that
they release the IDA gene in the abscission zone, which
codes a 77-amino-acid polypeptide with the N-terminal
signal sequence (Figure 8). It has been established by
sequential analysis that there is a conservative region
close to the C-terminal peptide section, rich in basic
amino acids, which resembles the PSK and CLV3
precursor structure.

During studies carried out so far, the role and
mechanism of action of IDA have not been established
yet; nevertheless, it has been found that it probably
plays a role of ligand for HAESA, kinase of the LRR-RLK-
type engaged in the process of floral organs abscission
[27].

ROTUNDIFOLIA4, DEVIL1(DVL1)

Leaf shape is determined by polar cell expansion and
polar cell proliferation along the leaf axes. As shown by
studies on Arabidopsis genes ROTUNDIFOLIA4 (ROT4)
and DEVIL1 (DVL1) [28,29] are among genes engaged
in the cell proliferation process. It follows from studies
that plants with the gene ROT4 overexpression possess
round leaves, shortened floral organs, and short
inflorescence stems. A similar phenotype is observed
among dvl1-1D mutants. They are characterized by
shortened petioles, shortened siliques, and moderately
horned fruit tips. On the basis of these observations, it
has been evaluated that the ROT4 and DVL genes serve
a similar function [28].

ROT4 and DVL1 are members of the family described
as RTFL (ROT FOUR-LIKE) (Figure 9). So far, the
peptides coded by these two genes have not been
isolated. Nevertheless, genome sequential analysis has
established that they code peptides consisting of 53 and
51 amino acid residues, respectively.

All peptides coded by the RTFL genes are character-
ized by the presence of a conservative 29-amino-acid
segment (RTF). These peptides are engaged in the cell

MAPCRTMMVLLCFVLFLAASSSCVAAARIGATMEMKKNIKRLTFKNSHIFGYLPKGV
PIPPSAPSKRHNSFVNSLPH

Figure 8 Alignment of predicted amino acid sequences of IDA [77].
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Rot4
MAP - - - - - EENGTCEPCK-TFGQKCSHVVKKQRAKFYLLRRCIAMLVCWHDQNHDRKDS
DVL1
MEMKRVMMSSAERSKEKKRSISRRLGKYMKEQKGRIYIIRRCMVMLLCSHD - - - - - - - -  
DVL2
MES - - - IMS – LKR - KEKK-SQSRRLGKYLKEQKGRIYIIRRCMVMLLCSHD - - - - - - - -  
DVL3
MKG - - - - - T - - - - - - KKKT-PCNKKLGGKYLKEQKGRIYIIRRCMVMLLCSHD - - - - - - - - 
DVL4
MK - - - - - - - - MGG- SKRR-VSSKGLGAVLKEQKGRIYIIRRCMVMLLCSHD - - - - - - - - 
DVL5
MKT - - - TGSSVGG-TKRK-MWSRGVGGVVREQKAKLIIRRCMVMLLCSHD - - - - - - - - 

Figure 9 Deduced amino acid sequences of ROT4/DVL [77].

proliferation process at the different plant development
stages.

SUMMARY

The discovery of plant peptide hormones has given
rise to new directions of research in phytochemistry
and plant physiology. The incentive to undertake those
studies has not only been the cognitive aspect but also
a practical one, especially to agriculture. The results of
studies on the plant signal peptides presented here are
mainly the results of studies performed by biologists.
The material contained in the present article is not
chemically uniform. These articles may be rated among
pioneer studies aimed at the molecular explanation
for obscure plant physiological mechanisms, which are
controlled by plant endogenous peptide substances.
The aim of this review is the arousal of interest in a
wider group of scientists who could take up the task of
explanation of the role of individual factors presented
here in the plant physiological functions.
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